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• 19%-28% of Internet users participate in online health 
discussions.  

• In North America, 59% of all adults have looked online 
for information about  a disease or treatment.  

• Up to 49% of the users are most interested in personal 
testimonials related to health 
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Personal Health Information 

• Personal health information (PHI) is information 
about one’s health discussed by a patient in a 
clinical setting  

• PHI is the most vulnerable private information 
posted online 
– I have a family history of Alzheimer's disease. I have 

seen what it does and its sadness is a part of my life. I 
am already burdened with the knowledge that I am at 
risk.  

– We're going for the basic blood tests, the NT scan, and 
the "Ashkenazi panel" since both XX and I are Jewish 
from E. European descent.  
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Motivation 
• Health information posted by the general public is important for the 

development of health care policies 
– I really dont know why everyones freaking out about the H1N1 vaccine. I 

got it the first day it came out (about a week and a half ago) and so did 4 
of my family members. None of us had any problems and were all really 
glad we got the vaccine. 

 

• Previous to emergence of social networks,  subjective health 
information had been analysed on restricted and controlled groups 
(e.g., nuns from the same monastery, patients  of the same clinic) 

   

• Data harvested from social networks provide an opportunity for 
development of social mining techniques 
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Outline 

• We present sentiment analysis of messages posted on a 
medical forum.  

• We categorize posts into five categories: encouragement, 
gratitude, confusion, facts, and endorsement. 

• Our empirical results are obtained on 1438 messages from 
130 discussions dedicated to infertility treatments.  

• Our analysis concentrates on sequences of sentiments in the 
forum discourse.  
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Example 

• Alice: Jane - whats going on?? 
• Jane: We have our appt. Wednesday!! EEE!!! 
• Beth: Good luck on your transfer! Grow embies 

grow!!!! 
• Jane: The transfer went well - my RE did it himself 

which was comforting. 2 embies (grade 1 but 
slow in development) so I am not holding my 
breath for a positive. This really was my worst 
cycle yet   ; it was the Antagonist protocol which 
is supposed to be great when you are over 40 but 
not so much for me!! 
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Data 

• We looked for discussions where the forum participants 
discussed only one topic.   
– A preliminary analysis showed that discussions with ≤ 20 posts 

satisfied this condition.  

• We wanted discussions be long enough to form a meaningful 
discourse.  
– This condition was satisfied when discussion had ≥ 10 messages.  

• As a result, 80 discussions were selected for a manual 
analysis; average of 17 messages per discussion. 
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Challenges of Sentiment and Opinion Mining in 
Health-related Messages 
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Sentiment: I am sickened by 
the thought … 
 

Ailment: I feel sick for awhile; 
should see my physician 
 
 

Opinion:  I think it is evident 
that … 

Improvement: The benefit is 
usually evident within a few days 
of starting it 

Humor:  don't forget that 
it's better for your health to 
enjoy your steak than to 
resent your sprouts 
 

Complain: After that my health 
deteriorated … 



Modus Operandi 

• Data annotation by 2 annotators  

• Minimal text pre-processing  

• Domain-specific resource (i.e., HealthAffect 
lexicon) 

• Use of robust Machine Learning methods 

– Naive Bayes, Logistic Regression   

• Appropriate evaluation metrics  
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Annotation Process 

We used 292 random posts to verify whether the messages were self-
evident for sentiment annotation or required an additional context.   
 
The annotators reported that posts were long enough to convey 
emotions and in most cases there was no need for a wider context  
 

 Two raters annotated each post with the dominant sentiment.  
 
Only author’s subjective comments were marked as such; if the author 
conveyed sentiments of others, we did not mark it. 
 
We obtained Fleiss Kappa = 0.737 which indicated a strong agreement 
between annotators.  

 



Class distribution of the IVF posts 

Classification category # posts 

 

 

Per-cent 

Facts 494 34.4% 

Encouragement 333 23.2% 

Endorsement 166 11.5% 

Confusion 146 10.2% 

Gratitude 131 9.1% 

Ambiguous 168 11.7% 

Total  1438 

 

 

100% 



The most frequent sequences of 
sentiments 

Sentiment pairs Occurrence Percent 

facts,   facts 170 19.5% 

encouragement, encouragement 119 13.7% 

facts, encouragement 55 6.3% 

endorsement,  facts 53 6.1% 

encouragement, facts 44 5.1% 

Sentiment triads Occurrence Percent 

factual,  factual,  factual 94 12.8% 

encouragement, encouragement, 

encouragement 63 8.6% 

encouragement, gratitude, encouragement 18 2.4% 

factual,  endorsement,  factual 18 2.4% 

confusion,  factual,  factual 17 2.3% 



HealthAffect 

• We adapted the Pointwise Mutual Information (PMI) of word1 and word2 
(Turney, 2002): 

PMI(word1, word2) = log2(p(word1 & word2)/( p(word1) p(word2))) 

• First, we created a list of phrases, i.e., all unigrams, bigrams and trigrams, 
of words with frequency ≥ 5 from the unambiguously annotated posts.  

• Then, for each class, we calculated 

 PMI(phrase, class) = log2( p(phrase in class)/( p(phrase) p(class))). 

• Finally, we calculated Semantic Orientation (SO) for each term:  

SO(phrase, class) = PMI(phrase, class) - Σ PMI(phrase, other_classes) 

• 431 unigrams, 555 bigrams, 214 trigrams 
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Sentiment Recognition  

• We calculated the number of HealthAffect terms from 
each category in the post and classified the post in the 
category for which the maximal number of terms was 
found. 

• The algorithm’s performance was evaluated through 
two multiclass classification results:  
– 4-class classification where all 1269 unambiguous posts 

are classified into (encouragement, gratitude, confusion, 
and neutral, i.e., facts and endorsement), and  

– 3-class classification (positive: encouragement, gratitude; 
negative: confusion, neutral: facts and endorsement). 
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Classification Accuracy 
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Metrics 4-class classification 3-class classification 

microaverage F-score  

 

0.633 0.672 

macroaverage Precision  

 

0.593 0.625 

macroaverage Recall  

 

0.686 0.679 

macroaverage F-score  

 

0.636 0.651 



Sentiment Classification 

• The most accurate classification occurred for gratitude. It 
was correctly classified in 83.6% of its occurrences.  It was 
most commonly misclassified as encouragement (9.7%).  

• The second most accurate result was achieved for 
encouragement. It was correctly classified in 76.7% of 
cases. It was misclassified as neutral, i.e. facts + 
endorsement, in 9.8%.  

• The least often correctly classified class was neutral 
(50.8%). One possible explanation is the presence of the 
sentiment bearing words in the description of facts in a 
post which is in general objective and which was marked as 
factual by the annotators. 
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Related Work 

• 16 categories of opinions and emotions in health-related 
tweets were presented in (Chew and Eysenbach, 2010).  

• Sokolova and Bobicev (2011) studied positive and negative 
opinions and positive and negative sentiments in the health-
related sci.med messages from 20 NewsGroups 

• Sentiments in health-related tweets were studied in (Bobicev 
et al, 2012).  

• sentiment propagation among related semantic concepts has 
been studied by Tsai et al, 2013.  
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Discussion 

• We obtained a strong inter-annotator agreement between two 
independent annotators: Fleiss Kappa = 0.73. The Kappa values 
demonstrated an adequate selection of classes of sentiments and 
appropriate annotation guidelines.  

• A specific set of sentiments on the IVF forum suggested that we applied 
the PMI approach to build a domain-specific lexicon HealthAffect.  

• Manual analysis of a sample of data showed that discussion contained a 
coherent discourse. Some unexpected shifts in the discourse flow were 
introduced by a new participant joining the discussion.  

• In future work, we may include the post’s author information in the 
sentiment interaction analysis.  

• One future possibility is to construct a Markov model for the sentiment 
sequences. However, in any online discussion there are random shifts and 
alternations in discourse which complicate application of the Markov 
model. 
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Markov Model: the transition matrix of sentiments 
(rows = previous, columns = next) for the thread 

“Anyone in the group TTC?” 

factual encourage-
ment 

gratitude confusion end 

Start 48 9 0 108 0 

Factual 1583 837 270 181 87 

Encourage-
ment 

874 836 260 129 59 

Gratitude 229 224 91 54 22 

confusion 333 283 16 99 7 
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Transform into a matrix of probabilities, by 
dividing each value by the row total 

factual encourage-
ment 

gratitude confusion end 

Start 0.291 0.055 0 0.655 0 

Factual 0.535 0.283 0.091 0.061 0.029 

Encourage-
ment 

0.405 0.387 0.120 0.060 0.027 

Gratitude 0.363 0.371 0.144 0.086 0.035 

confusion 0.451 0.383 0.022 0.134 0.009 
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Markov Model: analogy with CLAWS part-
of-speech tagger 

• Imagine annotators / machine classifiers 
cannot decide between confusion and factual 
for the first post. 

• Which is more likely, a) start  confusion  
factual, or b) start  factual  factual? 

• a) 0.655 x 0.451 = 0.295 

• b) 0.291 x 0.535 = 0.155  
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Correspondence Analysis of a sequence of postings 
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Thank you! 

Questions? 
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